Universal Approximation of Markov Kernels by Shallow Stochastic Feedforward Networks
نویسنده
چکیده
We establish upper bounds for the minimal number of hidden units for which a binary stochastic feedforward network with sigmoid activation probabilities and a single hidden layer is a universal approximator of Markov kernels. We show that each possible probabilistic assignment of the states of n output units, given the states of k ≥ 1 input units, can be approximated arbitrarily well by a network with 2k−1(2n−1 − 1) hidden units.
منابع مشابه
Expected Duration of Dynamic Markov PERT Networks
Abstract : In this paper , we apply the stochastic dynamic programming to approximate the mean project completion time in dynamic Markov PERT networks. It is assumed that the activity durations are independent random variables with exponential distributions, but some social and economical problems influence the mean of activity durations. It is also assumed that the social problems evolve in ac...
متن کاملArrival probability in the stochastic networks with an established discrete time Markov chain
The probable lack of some arcs and nodes in the stochastic networks is considered in this paper, and its effect is shown as the arrival probability from a given source node to a given sink node. A discrete time Markov chain with an absorbing state is established in a directed acyclic network. Then, the probability of transition from the initial state to the absorbing state is computed. It is as...
متن کاملPii: S0893-6080(97)00097-x
In this paper, we present a review of some recent works on approximation by feedforward neural networks. A particular emphasis is placed on the computational aspects of the problem, i.e. we discuss the possibility of realizing a feedforward neural network which achieves a prescribed degree of accuracy of approximation, and the determination of the number of hidden layer neurons required to achi...
متن کاملLimit Theorems for Some Adaptive Mcmc Algorithms with Subgeometric Kernels: Part Ii
We prove a central limit theorem for a general class of adaptive Markov Chain Monte Carlo algorithms driven by sub-geometrically ergodic Markov kernels. We discuss in detail the special case of stochastic approximation. We use the result to analyze the asymptotic behavior of an adaptive version of the Metropolis Adjusted Langevin algorithm with a heavy tailed target density.
متن کاملCombination of Approximation and Simulation Approaches for Distribution Functions in Stochastic Networks
This paper deals with the fundamental problem of estimating the distribution function (df) of the duration of the longest path in the stochastic activity network such as PERT network. First a technique is introduced to reduce variance in Conditional Monte Carlo Sampling (CMCS). Second, based on this technique a new procedure is developed for CMCS. Third, a combined approach of simulation and ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1503.07211 شماره
صفحات -
تاریخ انتشار 2015